Как устроена ферма, работающая на солнечной энергии и морской воде

Типы солнечных электростанций и принципы их работы

Дата публикации: 28 января 2019

Экономичность и перспективность использования солнечной радиации в качестве альтернативного источника энергии и стали основными причинами широкого распространения гелиостанций. Их применяют как в промышленных целях, так и в частных секторах. Солнечные панели – не единственный метод использования энергии солнца. Сегодня ее преобразуют несколькими способами, которые и определяют типы солнечных электростанций (СЭС).

Пожалуй, солнце уже нельзя отнести в топ-10 необычных источников энергии. Разнообразие СЭС подтверждает изученность этой сферы энергетики. Все солнечные электростанции по конструкции подразделяются несколько видов:

  • тарельчатого типа;
  • применяющие фотопанели;
  • работающие на основе параболоцилиндрических концентраторов;
  • с двигателем Стирлинга;
  • башенные;
  • аэростатные;
  • комбинированные.

СЭС тарельчатого типа

Тарельчатые СЭС состоят из модулей, поэтому такие станции могут применяться не только самостоятельно. Их включают в группы, тем самым повышая мощность до нескольких мегаватт. Система имеет конструкторский характер сборки. Каждый модуль такой электростанции на солнечной энергии состоит из нескольких частей:

  • Опоры. Она предназначена для крепления фермы, которая служит основанием для остальных элементов.
  • Приемника. Выполняет функцию концентрации солнечных лучей. Приемником может выступать двигатель Стирлинга или парогенератор.
  • Отражателя. Используется, чтобы сконцентрировать солнечные лучи в генератор, расположенный прямо перед ним. Именно форма отражателя в виде тарелок дала название таким СЭС. Зеркала расположены на ферме по радиусу. Каждое из них индивидуально настроено.

Диаметр зеркал может достигать 2 м. Автономные СЭС работают только на одном модуле. Другой вариант конструкции, когда параллельно работают сразу несколько десятков модулей. Подобные станции особенно распространены на территории Нидерландов и в штате Калифорния в США.

СЭС башенного типа

Башенные гелиостанции работают по тому же принципу, что и тарельчатые. Основу системы составляет башня, достигающая в высоту 18-24 м. Ее располагают по центру всей установки. Составляющие башни:

  • Резервуар, наполненный водой. Чтобы поглощать максимум солнечного излучения, он покрашен в черный цвет..
  • Насосная группа. Образующийся пар нужно доставить на турбогенератор, что и делает насос.

Вторая составляющая станции – гелиостаты, которые окружают башню. За счет включения в общую систему позиционирования зеркала подстраиваются под положение солнца, меняя свою ориентацию. Температура в резервуаре достигает 700 °C в яркую солнечную погоду, а КПД – 20%.

СЭС с параболическими концентраторами

Электрогенерирующая способность таких СЭС тоже связана с отражательной способностью зеркал. Вместо тарелок в основе конструкции находится параболический цилиндр длиной до 50 м. Его составляют из отдельных модулей. В фокусе такого отражателя расположена трубка, предназначенная для движения жидкого теплоносителя. Чаще всего эту роль выполняет масло. Как работает солнечная электростанция:

  1. При прохождении всего пути теплоноситель нагревается, передавая свое тепло воде.
  2. Она преобразуется в пар, который направляют на турбогенератор.
  3. Устройство преобразует полученную энергию в электричество.

Девять подобных СЭС были построены еще в 80-х годах в Калифорнии. Суммарная мощность установок составила 354 МВт. Но на практике оказалось, что эффективность таких СЭС значительно ниже, чем тарельчатого и башенного типа.

Несмотря на это, гелиостанции с параболическими концентраторами продолжают строиться. Так, в 2016 году подобную установку ввели в эксплуатацию в Марокко. Здесь ее расположили в пустыне Сахара, рядом с Касабланкой. Мощность установки достигла 500 МВт. Ее обеспечивают 0,5 млн зеркал длиной 12 м.

С двигателем Стирлинга

СЭС с двигателем Стирлинга – это разновидность гелиостанций, тоже состоящих из параболических концентраторов. Разница здесь лишь в конструкции, которую помещают в их фокусе. Здесь это именно двигатель Стирлинга, представляющий собой двигатель с маховиком. Система представлена замкнутым рабочим контуром, по которому движется газ или жидкость. В частности, для СЭС применяют водород или гелий.

Главное отличие такой установки – суммарный КПД до 34%. Принцип действия солнечной электростанции:

  1. Каждый концентратор благодаря альбедо в 95% отражает солнечные лучи.
  2. Они попадают на двигатель, одна из сторон которого за счет этого нагревается.
  3. Вторая сторона охлаждается окружающим воздухом, а система в это время двигает поршень Стирлинга туда-сюда, что обеспечивает генерацию до 40 кВт энергии.
  4. Часть ее тратится на воздухообмен и перемещение зеркал концентраторов, которые поворачиваются вслед за Солнцем.
  5. Вычтя эти затраты, можно получить величину «чистой» генерации в 33 кВт, что и обеспечивает указанный выше КПД в 34%.

Получается, что станция работает за счет колебаний поршня, которые преобразуются в электроэнергию. КПД оказывается примерно в 2 раза выше, чем у обычных гелиотермальных установок. Это обусловлено также и тем, что при сочетании двигателя Стирлинга и концентраторов параболической формы рабочий зазор будет совсем небольшим. В результате затраты на нагрев воздуха между генератором и зеркалом значительно снижаются.

СЭС на фотоэлектрических модулях

Фотоэлектрические гелиостанции считают классическими. В их основе лежит применение солнечных батарей и модулей. Если электроснабжение требуется для небольших объектов, применяют модули без кремниевых элементов. Их устанавливают на крышах или участке земли.

Для промышленных объектов предусмотрены более мощные фотобатареи, которые занимают значительные площади. Принцип работы такой гелиоэлектростанции прост. Для получения электричества преобразуют энергию фотонов света. Станция может работать на отдельный насос или снабжать электричеством целый поселок. Все зависит от количества и мощности панелей. Они особенно распространены в частном секторе. Правильно выбрать солнечную батарею для дома совсем несложно.

Читать еще:  Как получить сиреневые и голубые цветки у гортензии?

Аэростатные СЭС

Только аэростатные СЭС собирают до 97% всей солнечной энергии. Их преимуществом считают и то, что они занимают сравнительно небольшую площадь. Основа конструкции – громоздкий баллон аэростата, который располагается в воздухе. Независимо от погоды и времени суток он поглощает все солнечные лучи. Это обеспечивается возможностью поднимать и опускать баллон.

Комбинированные СЭС

Уже из названия понятно, что комбинированные СЭС совмещают в себе разные типы гелиостанций. Часто сочетают между собой солнечные батареи и концентраторы – тарельчатые или параболические. Кроме производства энергии на солнечных электростанциях предусмотрена возможность обеспечения населения горячей водой. Ее нагрев осуществляют за счет дополнительно установленных теплообменных конструкций.

Разнообразие видов солнечных электростанций только подтверждает, что сегодня они активно развиваются. В связи с этим крупные компании продолжают вкладывать в строительство таких установок серьезные инвестиции. Гелиостанции окупают себя за несколько лет и остаются рентабельными в отличие от ископаемых ресурсов, цены на которые постепенно растут. Существующие же виды СЭС продолжают совершенствовать, чтобы устранить их основные недостатки. В будущем это позволит использовать солнечную энергию на полную мощность как в промышленных, так и в гражданских целях.

Вам нужно войти, чтобы оставить комментарий.

Принцип работы солнечной батареи: как устроена и работает солнечная панель

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

Солнечные батареи: терминология

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя, т.е. солнечные панели используют для отопления дома.

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

Внутреннее устройство гелиобатареи

Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Читать еще:  Как вкусно приготовить цветную капусту

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Настоящим прорывов в области использования солнечной энергии стала разработка гибких панелей с аморфным фотоэлектрическим кремнием:

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

  • температуры воздуха и самой батареи;
  • правильности подбора сопротивления нагрузки;
  • угла падения солнечных лучей;
  • наличия/отсутствия антибликового покрытия;
  • мощности светового потока.

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

Читать еще:  Как ухаживать за огурцами в теплице и парнике

Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен инвертор. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Выводы и полезное видео по теме

Принципы работы и схемы подключения солнечных батарей не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

Как устроены солнечные батареи смотрите в следующем видеоролике:

Сборка солнечной панели из фотоэлементов своими руками:

Каждый элемент в системе солнечного электроснабжения коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.

В ходе изучения материала появились вопросы? Или вы знаете ценную информацию по теме статьи и можете сообщить ее нашим читателям? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

Аквафотовольтаика: солнечные электростанции совместят с фермами по разведению рыбы и креветок

Институт солнечных систем энергетики им. Фраунгофера ISE и его партнеры хотят продемонстрировать, что двойное использование земли для аквакультуры и фотоэлектрической промышленности может решить системные проблемы.

Fraunhofer ISE очень активный сторонник объединения солнечной энергетики и сельского хозяйства. В экспериментах института в Германии и Южной Америке было показано, что сочетание солнечных панелей и сельского хозяйства может повысить продуктивность земель до 40%. Ученые называют процесс агрофотовольтаикой и он включает больше, чем просто монтаж конструкций для солнечных батарей достаточно высоко над землей, чтобы под ними могла работать обычная сельскохозяйственная техника. Теперь немецкие инженеры намерены развить несколько иное направление – аквафотовольтаику (Aqua-PV).

Солнечные электростанции совместят с фермами по разведению рыбы

Вьетнам, как и весь регион Юго-Восточной Азии, находится в зоне экономического роста и увеличения численности населения, и потребности страны в электричестве прирастают на 10% в год. Проект SHRIMPS (аббревиатура, дословно значащая «креветки») – это «интегрированная многоуровневая система ресурсоэффективного использования при производстве солнечной энергии и аквакультуры», где под последней понимаются коммерческие прудовые хозяйства по выращиванию креветок.

Разработчик этой системы, Институт солнечных энергетических систем Фраунхофера (Fraunhofer ISE) вместе со своими партнерами хочет продемонстрировать возможности двойного использования земли под аквакультурную ферму и генерирующую солнечную энергию установку. Пилотные фермы уже были запущены и протестированы в дельте реки Меконг.

Fraunhofer ISE еще в прошлом году подготовил предварительное техническое обоснование строительства ферм двойного назначения в дельте Меконга для германского провайдера GIZ. Сейчас этот проект проходит проверку технической и коммерческой жизнеспособности при участии лидера в производстве креветок на вьетнамском рынке, компании Viet Uc Seafood.

Из соображений санитарной безопасности все больше и больше рыбохозяйств и креветочных ферм в ЮВА помещаются под крышу: получается что-то вроде теплиц, которые предотвращают распространение болезней, переносимых птицами. Теоретически многие из этих куполов подходят для монтажа модулей солнечных панелей.

Наземные фермы для производства креветок являются замкнутыми системами, обеспечивающими бережное использование земельных и водных ресурсов, малый расход воды сохраняет мангровые леса, а замкнутый цикл питания креветок микроорганизмами сводит к минимуму использование антибиотиков. В результате установки солнечных панелей на куполах теплиц внутри уменьшается инсоляция, что благоприятно сказывается на условиях труда работников фермы.

По последним расчетам, опытная солнечная электростанция мощностью в 1 мВт на креветочной ферме в Бакльеу уменьшает выброс СО2 на 15 000 тонн в год и сокращает потребление воды на 75% по сравнению с традиционными креветочными фермами.

Другая солнечная установка производительностью 400 кВт размещена над пресноводным водоемом с пангасиусом. Солнечные модули расположены горизонтально над поверхностью воды, что уменьшает испарение, а значит, и расход воды, а также защищает бассейн и рыбу от атак птиц и производимого ими загрязнения.

Сто процентов произведенной солнечной энергии будет использоваться самой фермой по разводу пангасиуса, так как она изначально разрабатывалась для автономной работы. Это значительно снизит потребность в дизеле, обычно используемом для питания фермы. «Мы хотим использовать этот проект, чтобы продемонстрировать дополнительную ценность, которая может быть получена путем интеграции фотоэлектрических элементов в различные сферы жизни», — объясняет менеджер проекта Максимилиан Троммсдорф из Fraunhofer ISE.

Это особенно верно для аквакультуры, говорит он. «В отношении Aqua-PV мы в настоящее время работаем с предположением, что уровень землепользования может быть почти удвоен по сравнению с одной наземной фотоэлектрической системой».

Проект рассчитан на три года и начнется с моделирования небольших систем, прежде чем будут построены две большие установки. «На третьем этапе мы снова уменьшим масштаб, чтобы разработать решение для малых и средних предприятий аквакультуры. Это сделает подход доступным для среднего сельского жителя с точки зрения технологий и необходимых инвестиций», — добавляет Троммсдорф.

Внедрение на рынок технологии Aqua-PV в сочетании с усилиями местных партнеров должно способствовать улучшению энергетической безопасности в регионе, а также повышению уровня его экономики. С учетом того, что аквакультура и фотовольтаика стремительно развиваются во всем мире, команда проекта считает, что их подход может многое предложить для многих других развивающихся и промышленно развитых стран. опубликовано econet.ru

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Ссылка на основную публикацию
Adblock
detector